Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Incidence of premenopausal breast cancer (BC) has risen in recent years, though most existing BC prediction models are not generalizable to young women due to underrepresentation of this age group in model development. METHODS: Using questionnaire-based data from 19 prospective studies harmonized within the Premenopausal Breast Cancer Collaborative Group (PBCCG), representing 783,830 women, we developed a premenopausal BC risk prediction model. The data were split into training (2/3) and validation (1/3) datasets with equal distribution of cohorts in each. In the training dataset variables were chosen from known and hypothesized risk factors: age, age at menarche, age at first birth, parity, breastfeeding, height, BMI, young adulthood BMI, recent weight change, alcohol consumption, first-degree family history of BC, and personal history of benign breast disease (BBD). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated by Cox proportional hazards regression using age as time scale, stratified by cohort. Given that complete information on all risk factors was not available in all cohorts, coefficients were estimated separately in groups of cohorts with the same available covariate information, adjusted to account for the correlation between missing and non-missing variables and meta-analyzed. Absolute risk of BC (in situ or invasive) within 5 years, was determined using country-, age-, and birth cohort-specific incidence rates. Discrimination (area under the curve, AUC) and calibration (Expected/Observed, E/O) were evaluated in the validation dataset. We compared our model with a literature-based model for women 

Original publication

DOI

10.1186/s13058-025-02031-8

Type

Journal article

Journal

Breast Cancer Res

Publication Date

01/05/2025

Volume

27

Keywords

Premenopausal breast cancer, Risk prediction model, Young-onset breast cancer, Humans, Female, Breast Neoplasms, Premenopause, Adult, Risk Factors, Middle Aged, Risk Assessment, Proportional Hazards Models, Cohort Studies, Incidence, Prospective Studies, Models, Statistical