Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigate methods that improve the estimation of indoor gamma ray dose rates at locations where measurements had not been made. These new predictions use a greater range of modelling techniques and larger variety of explanatory variables than our previous examinations of this subject. Specifically, we now employ three types of machine learning models in addition to the geostatistical, nearest neighbour and other earlier models. A large number of parameters, mostly describing the characteristics of dwellings in the area in question, have been added to the set of explanatory variables. The use of machine learning methods results in significantly improved predictions over earlier models. The machine learning models are noisy and there is some instability in the relative importance of particular explanatory variables although there are general and consistent tendencies supporting the importance of certain classes of variable. However, the range of predicted indoor gamma ray dose rates is much smaller than that of the measurements. It is probable that epidemiological studies using such predictions will have lower statistical power than those based on direct measurements.

Original publication

DOI

10.1016/j.jenvrad.2024.107595

Type

Journal

J Environ Radioact

Publication Date

27/12/2024

Volume

282

Keywords

Gamma radiation, Geostatistcs, Machine learning, Natural background, Neural networks, Random forests