Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UK Biobank is a large-scale prospective study with extensive genetic and phenotypic data from half a million adults. Participants, aged 40 to 69, were recruited from the general UK population between 2006 and 2010. During recruitment, participants completed questionnaires covering lifestyle and medical history, underwent physical measurements, and provided biological samples for long-term storage. Whole-cohort assays have been conducted, including biochemical markers, genotyping, whole-exome and whole-genome sequencing, as well as proteomics and metabolomics in large subsets of the cohort, with potential for additional assays in the future. Participants consented to link their data to electronic health records, enabling the identification of health outcomes over time. Research studies using UK Biobank data have already enhanced our understanding of the role of genetic variation in neurologic disease, offering insights into potential therapeutic approaches. The integration of genetic and imaging data has led to significant discoveries regarding the relationship between genetic variants and brain structure and function, particularly in Alzheimer disease and Parkinson disease. Genetic data have also allowed Mendelian randomization analyses to be performed, enabling further investigation into the causality of associations between behavioral and physiologic factors-such as diet and blood pressure-and neurologic outcomes. Furthermore, genetic and proteomic data have been particularly useful in identifying new drug targets for neurologic disease and in enhancing risk prediction algorithms that are increasingly applied in clinical practice to identify those at higher risk. As UK Biobank continues to be enhanced, and the cases of neurologic disease accrue over time, the study will become increasingly valuable for both discovery and translational research on genetics and neurologic disease.

Original publication

DOI

10.1212/NXG.0000000000200226

Type

Journal

Neurol Genet

Publication Date

02/2025

Volume

11